Corrigé Maths II, TSI (2006): Concours marocain

4 juillet 2008

EXERCICE

- 1) Evident car $A^3 + A = 0$
- a) u injectif donc bijectif car endomorphisme en dimension finie, donc A inversible, en multipliant l'égalité $A^3 + A = 0$ par A^{-1} , on en déduit que $A^2 = -I_3$, d'où $u^2 = -id_E$. Donc $\det(u^2) = \det(-id_E)$, d'où $\det(u)^2 = -1$, impossible car $\det u \in \mathbb{R}$.
 - b) u n'est pas injective, donc $0 \neq \ker u \subset \mathbb{R}^3$, d'où dim $\ker u \in \{1, 2\}$.
- 3) $x \in \ker u \cap \ker(u^2 + id_E) \Longrightarrow u(x) = u^2(x) + x = 0 \Longrightarrow x = 0$. D'autre part $\forall x \in E$, on a : $u^3(x) + u(x) = 0$, donc $x + u(x) \in \ker u$ et $-u(x) \in \ker(u^2 + id_E)$, avec x = x + u(x) u(x), d'où $E = \ker u \oplus \ker(u^2 + id_E)$. On a dim E = 3, dim $\ker u \in \{1, 2\}$, d'où $\ker(u^2 + id_E) \in \{1, 2\}$.
- 4) a) $x \in F = \ker(u^2 + id_E) \Longrightarrow u^2(x) = -x \Longrightarrow (u^2 + id_E)u(x) = u^3(x) + u(x) = u(u^2(x) + x) = u(0) = 0 \Longrightarrow u(x) \in \ker(u^2 + id_E) = F$, d'où F est stable par u.
 - b) $\forall x \in F = \ker(u^2 + id_E)$ on a $v^2(x) = u^2(x) = -x$, donc $v^2 = -id_F$.
 - c) Posons $r = \dim F$, donc $\det v^2 = (-1)^r$, or $\det(v^2) = (\det v)^2 \ge 0$, d'où r pair avec $r \in \{1, 2\}$, donc r = 2.
 - d) Supposons que v admet une valeur propore réelle, λ , donc $\exists x \neq 0$ tel que $v(x) = \lambda x$, d'où $v^2(x) = \lambda^2 x = -x$, d'où $\lambda^2 = -1$, impossible.
- 5) a) $\operatorname{card}\{e_2', e_3'\} = 2 = \dim F$, il suffit de montrer qu'elle est libre, en effet supposons que $\alpha e_2' + \beta e_3' = 0$, or $e_3' = u(u_2')$, donc $\alpha u(e_2') + \beta u^2(e_3') = 0$, donc $\alpha e_3' \beta e_3' = 0$, $\operatorname{car} u = v \operatorname{sur} F \operatorname{et} v^2 = -id_F$, ainsi $\alpha = \beta$, d'où $\alpha(e_2' + u(e_2')) = 0$, d'autre part $u(e_2') \neq -e_2' \operatorname{car} u = v \operatorname{sur} F$ n'admet pas de valeurs propres, donc $\alpha = \beta = 0$.
 - b) $\mathcal{B}' = (e'_1, e'_2, e'_3)$ base de E, car $E = \ker u \oplus F$. De plus $u(e'_1) = 0, u(e'_2) = e'_3, u(e'_3) = u^2(e'_2) = -e'_2$, d'où $\mathcal{M}_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$
 - c) A et B semblables car matrices d'un même endomorphisme dans deux bases différentes.

PROBLÈME

Première Partie

- 1) a) $p \circ p(x) = p((u|x)u) = (u|x)p(u) = (u|x)(u|u)u = p(x) \text{ car } (u|u) = ||u||^2 = 1.$
 - b) $x \in \ker p \iff p(x) = (x|u)u = 0 \iff (x|u) = 0 \text{ (car } u \neq 0 \iff x \in u^{\perp}.$ $x \in \operatorname{Im} p \iff p(x) = x \text{ (car } p \text{ projecteur)} \iff x = \lambda u \text{ où } \lambda = (x|u)) \iff x \in \operatorname{Vect}(u).$
 - c) (p(x)|y) = (x|u)(u|y) = (x|p(y)) donc p est symétrique et $(p(x)|x) = (u|x)^2$, donc p est positif.

- d) p est un projecteur orthogonale, ses seuls valeurs propres sont 0 et 1, donc les sousespaces propres associés sont $\ker p = \operatorname{Vect}(u)^{\perp}$ et $\operatorname{Im} p = \operatorname{Vect}(u)$ qui forment une somme directe dans E, donc p est diagonalisable.
- 2) a) Tout calcul fait les coefficients de la matrice U^tU sont les u_iu_i .
 - b) Les coefficients de la matrice de p dans la b.o.n \mathcal{B}_E sont donnés par la formule $a_{i,j} = (p(e_i)|e_j)$ or $p(e_i) = (e_i|u)u = u_iu$, d'où $a_{i,j} = u_i(u|e_j) = u_iu_j$, coefficient de U^tU . Donc la matrice de p dans la b.o.n n'est autre que U^tU .
- 3) a) Pour $\alpha = 0$, $f_{\alpha} = id_{E}$ est un automorphisme. Pour $\alpha \neq 0$, $\det(f_{\alpha}) = \det(id_{E} + \alpha p) = \alpha^{n} \det(p + \frac{id_{E}}{\alpha}) \neq 0 \iff -\frac{1}{\alpha}$ n'est pas valeur propre de $p \iff -\frac{1}{\alpha} \neq 1$, donc f_{α} automorphisme si et seulement si $\alpha \neq -1$.
 - b) $G \subset Aut(E)$ qui est un groupe pour la loi \circ , il suffit donc de montrer que c'est un sous-groupe. D'abord $id_E \in G$ pour $\alpha = 0$, d'autre part $f_{\alpha} \circ f_{\beta} = (id_E + \alpha p).(id_E + \beta p) = id_E + (\alpha + \beta + \alpha.\beta)p \in G$. Enfin $f_{\alpha} \circ f_{\beta} = id_E$ pour β tel que $\alpha + \beta + \alpha.\beta = 0$, i.e., $(f_{\alpha})^{-1} = f_{\beta} \in G$ où $\beta = -\frac{\alpha}{1+\alpha}$.
 - c) $f \in G \cap O(E) \iff f = f_{\alpha} \text{ tel que } ||f_{\alpha}(x)||^2 = ||x||^2 \ \forall x \in E. \text{ or } ||f_{\alpha}(x)||^2 = ||x + \alpha p(x)||^2 = ||x||^2 + 2\alpha(x|p(x)) + \alpha^2||p(x)||^2 = ||x||^2 + 2\alpha(x|u)^2 + \alpha^2(x|u)^2,$ donc $||f_{\alpha}(x)||^2 = ||x||^2 \iff \alpha(x|u)^2(2+\alpha) = 0, \ \forall x \in E \iff \alpha \in \{0, -2\} \text{ ou bien } (x|u) = 0 \ \forall x \in E, \text{ i.e., } u = 0 \text{ (impossible). Donc } G \cap O(E) = \{f_0 = id_E, f_{-2} = id_E 2p\}, \text{ donc } \frac{-f_{-2} + id_E}{2} = p, \text{ d'où } -f_{-2} \text{ est la symetrie orthogonale par rapport } \text{Vect}(u)^{\perp}.$
- 4) a) p étant diagonalisable, sa matrice est donc de la forme PDP^{-1} où D est une matrice diagonale formée par des -1 et des 1. La matrice de $f_{\alpha} = id_E + \alpha p$ est donc de la forme $I_n + \alpha PDP^{-1} = P(I_n + \alpha D)P^{-1}$ où $I_n + \alpha D$ est une matrice diagonale formée par des $1 + \alpha$ et des 1α qui sont donc les valeurs propres possible de f_{α} . Le sous espace propre associé à $1 + \alpha$ est $\ker(f_{\alpha} (1 + \alpha)id_E) = \ker(\alpha(p id_E)) = \ker(p id_E) = \operatorname{Im} p = \operatorname{Vect}(u)$. Le sous espace propre associé à 1α est $\ker(f_{\alpha} (1 \alpha)id_E) = \ker((\alpha + 1)p) = \ker p = \operatorname{Vect}(u)^{\perp}$. En particulier $P_p(\lambda) = (-1)^n \lambda^{n-1} (\lambda 1)$.
 - b) $P_{f_{\alpha}}(\lambda) = \det(f_{\alpha} \lambda i d_{E}) = \det(\alpha p (\lambda 1) i d_{E}) = \alpha^{n} \det(p \frac{\lambda 1}{\alpha} i d_{E}) = \alpha^{n} P_{p}(\frac{\lambda 1}{\alpha}) = \alpha^{n} (-1)^{n} \left(\frac{\lambda 1}{\alpha}\right)^{n-1} \left(\frac{\lambda 1}{\alpha} 1\right) = (-1)^{n} (\lambda 1)^{n-1} (\lambda 1 \alpha).$
 - c) Soit $x \in E$ tel que ||x|| = 1, on a déjà vu que $||f_{\alpha}(x)||^2 = ||x||^2 + 2\alpha(x|u)^2 + \alpha^2(x|u)^2 \le 1 + 2\alpha + \alpha^2 = (1+\alpha)^2$, car $(u|x) \le ||u|| ||x|| = 1$, donc $||f_{\alpha}|| \le |1+\alpha|$. D'autre part $||f_{\alpha}|| \ge ||f_{\alpha}(u)|| = |1+\alpha|$. D'où égalité.
- 5) a) Soit U la colonne formée par des $\frac{1}{\sqrt{n}}$, on a $J_n = nU^tU$, soit V une autre colonne telle que $J_n = nV^tV$, d'où $U^tU = V^tV$. Or $^tUU = 1$, de même que pour V (simple calcul), donc $U^tUV = V^tVU$, i.e., $V = \lambda U$ or ||U|| = ||V|| = 1, d'où $V = \pm U$.
 - b) $aI_n + bJ_n = a(I_n + \frac{nb}{a}U^tU)$, or U^tU n'est autre que la projection orthogonale sur u de coordonnées U, donc $g = af_{\frac{nb}{a}}$. Les valeurs propres de $f_{\frac{nb}{a}}$ sont $1 + \frac{nb}{a}$ et $1 \frac{nb}{a}$, celles de $g = af_{\frac{nb}{a}}$ sont donc a + nb et a nb. Le polynôme caractéristique de g est $P_g(\lambda) = \det(af_{\frac{nb}{a}} \lambda id_E) = a^n \det(f_{\frac{nb}{a}} \frac{\lambda}{a}id_E) = a^n P_{f_{\frac{nb}{a}}}(\frac{\lambda}{a}) = a^n(-1)^n(\frac{\lambda}{a} 1)^{n-1}(\frac{\lambda}{a} 1 \frac{nb}{a}) = (-1)^n(\lambda a)^{n-1}(\lambda a nb)$. les sous-espaces propres associés sont les ceux de f_α , c'est à dire Vectu et (Vectu) $^\perp$.

Deuxième Partie

- 1) a) Car h est diagonalisable dans une b.o.n, puisque symétrique.
 - b) Supposons que h est positif, et soit λ une valeur propre de h de vecteur propre associé x, donc $h(x) = \lambda x$ et $(h(x)|x) = (\lambda x|x) = \lambda ||x||^2 \ge 0$, d'où $\lambda \ge 0$. Inversement supposons que toutes les valeurs propres λ_i de h soient positives, et soit $D = diag(\lambda_1, \ldots, \lambda_n)$ la base de h dans une b.o.n formée de vecteurs propres. Soit $x \in E$ et $X = (x_i)$ la colonne formé par les coordonées de x dans cette même b.o.n, alors $(h(x)|x) = {}^t XDX = \sum_{i=1}^m \lambda_i x_i^2 \ge 0$, donc h est positif.
- 2) a) La linéarité de \tilde{f} découle de celle à droite du produit scalaire.

$$\forall x \in E, \forall 1 \le j \le m, \text{ on a}: <\tilde{f}(x), e'_j> = < \sum_{k=1}^m (f(e'_k)|x)e'_k, e'_j>$$

$$= \sum_{k=1}^m (f(e'_k)|x) \underbrace{< e'_k, e'_j>}_{\text{null si } k \ne j}$$

$$= (f(e'_j)|x)$$

Ainsi la propriété est vérifiée sur les éléments de la base (e'_j) , donc vérifiée par linéarité pour tout élément $y \in F$.

Unicité : Soit \tilde{f}_1 une autre application linéaire vérifiant la même propriété que \tilde{f} , donc $<\tilde{f}(x),y>=<\tilde{f}_1(x),y>$ $\forall y\in E,$ d'où $\tilde{f}_1(x)=\tilde{f}(x),$ $\forall x\in E.$

- b) $<\tilde{f}\circ f(x), y>=< f(x), f(y)>=< f(y), f(x)>=< \tilde{f}\circ f(y), x>=< x, \tilde{f}\circ f(y)>,$ donc $\tilde{f}\circ f$ est symétrique, d'autre part $<\tilde{f}\circ f(x), x>=< f(x), f(x)>=$ $\|f(x)\|^2\geq 0$, donc $\tilde{f}\circ f$ est positif.
- c) $x \in \ker \tilde{f} \iff \tilde{f}(x) = 0 \iff \langle \tilde{f}(x), y \rangle = 0, \ \forall y \in F \iff (x|f(y)) = 0, \ \forall y \in F \iff (x|z) = 0, \ \forall z \in \operatorname{Im} f \iff x \in (\operatorname{Im} f)^{\perp}$

Donc $\ker \tilde{f} = (\operatorname{Im} f)^{\perp}$. D'autre part, il est clair que $\ker f \subset \ker (\tilde{f} \circ f)$, inversement :

$$x \in \ker \tilde{f} \circ f \implies \tilde{f} \circ f(x) = 0$$

 $\implies \langle \tilde{f} \circ f(x), x \rangle = 0$
 $\implies \langle f(x), f(x) \rangle = ||f(x)||^2 = 0$
 $\implies f(x) = 0$
 $\implies x \in \ker f$

D'où l'autre inclusion.

- d) $\operatorname{rg}(\tilde{f} \circ f) = \operatorname{rg} f$ découle du fait que $\ker f = \ker(\tilde{f} \circ f), rg(f) \leq \min(n, m)$ découle du fait que $f : F \longrightarrow E$ est linéaire, avec $\dim E = n$ et $\dim F = m$.
- e) Les coéfficients $a_{i,j}$ de la matrice sont donnés par la formule suivante : $a_{i,j} = \langle f(e'_i), e_i \rangle$
 - i. Les coéfficients $\tilde{a}_{i,j}$ sont donnés par la formule : $\tilde{a}_{i,j} = (\tilde{f}(e_j)|e_i') = < e_j', f(e_i) >= a_{j,i}$. Donc la matrice associèe à \tilde{f} n'est autre que tA .
 - ii. La matrice associèe à $\tilde{f} \circ f$ est donc ${}^tA.A.$

- 3) a) Avec la notation $f(e'_k) = u_k$, on a $\forall x \in E$, $\tilde{f}(x) = \sum_{k=1}^{m} (u_k | x) e'_k$, donc $f \circ \tilde{f}(x) = \sum_{k=1}^{m} (u_k | x) f(e'_k) = \sum_{k=1}^{m} (u_k | x) u_k = \sum_{k=1}^{m} p_k(x)$, d'où $f \circ \tilde{f} = \sum_{k=1}^{m} p_k$.
 - b) $f \circ \tilde{f}$ est symétrique, en tant que somme d'endomrphisme symétriques. D'autre part $\forall x \in E$, on a : $(f \circ \tilde{f}(x)|x) = \langle \tilde{f}(x), \tilde{f}(x) \rangle = \|\tilde{f}(x)\|^2 \geq 0$, donc $f \circ \tilde{f}$ est positif.
 - c) Soit λ une valeur propre non nulle de $f \circ \tilde{f}$, donc $\exists x \neq 0$ tel que $f \circ \tilde{f}(x) = \lambda x$, en composant à gauche part \tilde{f} , on trouve $\tilde{f} \circ f(y) = \lambda y$ où $y = \tilde{f}(x) \neq 0$, car sinon $y = \tilde{f}(x) = 0 \Longrightarrow f \circ \tilde{f}(x) = \lambda x = 0$. Pareil pour la réciproque.
 - d) On a $f \circ \tilde{f}(e'_j) = \sum_{k=1}^m (u_k | e'_j) f(e'_k) = \sum_{k=1}^m (u_k | e'_j) u_k$, or les coéfficients de la matrice

G sont donnés par la formule $(f \circ \tilde{f}(e'_j)|e'_i) = \sum_{k=1}^{m} (u_k|e'_j)(u_k|e'_i)$, ainsi de $G = B^t B$ où B est la matrice de cofficients $(u_i|e'_j)$ c-à-d dont les colonnes sont exactement

où B est la matrice de cofficients $(u_i|e'_j)$ c-à-d dont les colonnes sont exactement les u_k , et on a déjà vu dans la question II,2,d que $G = {}^t AA$.

- e) $\operatorname{rg} G = \operatorname{rg} f$ est déjà traité dans la question II,2,d. 0 est une valeur propre de $\tilde{f} \circ f \iff \det G = 0 \iff \operatorname{rg} G = \operatorname{rg} B \neq m$, i.e., les colonnes (u_1, \ldots, u_m) sont liés.
- 4) a) Les coéfficients de la matrice B sont donnés par la formule du cours : $b_{i,j}$

$$\sum_{k=1}^{n} \underbrace{a_{k,i} a_{k,j}}_{\text{null si } i > k \text{ ou } j > k} = \sum_{k=1}^{\min(i,j)} 1 = \min(i,j), \text{ donc } B = \begin{pmatrix} 1 & \dots & 1 \\ 0 & 2 & \dots & 2 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & n \end{pmatrix}$$

- b) Prendre ${}^{t}u_{1} = (1, 0, \dots, 0), {}^{t}u_{2} = (1, 1, 0, \dots, 0), \dots, u_{m} = (1, \dots, 1).$
- c) 0 ne peut pas être une valeur propre de G, car la famille (u_1, \ldots, u_m) est libre, puisque elle forme la matrice inversible U tel que $U^tU = B$ où $U^tU = B$

$$\begin{pmatrix} 1 & \dots & 1 \\ 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Fin.